โลก ดาราศาสตร์ และอวกาศ



    เทคโนโลยีอวกาศ

    กล้องโทรทรรศน์ (Telescopes) 

          แม้ว่าตาของคนเรา สามารถมองเห็นท้องฟ้า แต่การใช้อุปกรณ์ประเภทกล้องสองตา หรือกล้องโทรทรรศน์ จะช่วยให้ตาเราสามารถรับแสงได้มากยิ่งขึ้น ทำให้มองเห็นวัตถุที่มีความสว่างน้อย หรือจางได้สว่าง หรือชัดเจนมากขึ้น กล้องโทรทรรศน์ (Telescopes) เป็นอุปกรณ์ช่วยดูดาวประเภทหนึ่ง ที่ช่วยให้นักดูดาว สามารถศึกษาท้องฟ้า ได้มากกว่ากล้องสองตา

    คำเตือน !!!

          ห้ามใช้กล้องสองตา หรือกล้องโทรทรรศน์ใดๆก็ตาม ส่องหรือมองไปยังดวงอาทิตย์โดยตรง โดยเด็ดขาด เพราะแสงของดวงอาทิตย์ ซึ่งมีความเข้มสูง จะทำให้ตาบอดได้ในทันที

     คุณลักษณะของกล้องโทรทรรศน์

         1. ขนาดของหน้ากล้อง (Aperture): ตัวแปรที่สำคัญที่สุด ของกล้องโทรทรรศน์ คือ ขนาดของเส้นผ่านศูนย์กลาง ของกล้อง ซึ่งหมายถึงขนาดของเลนส์วัตถุ (ในกล้องโทรทรรศน์ แบบหักเหแสง) หรือขนาดของกระจกสะท้อนแสง (ในกล้องโทรทรรศน์ แบบสะท้อนแสง) ทั้งนี้ก็เพราะว่า การที่วัตถุมองไม่ค่อยเห็น เกิดจากวัตถุนั้นๆจาง หรือได้รับแสงจากวัตถุนั้นน้อย ไม่ได้เกิดจากวัตถุเล็ก แล้วต้องการกำลังขยายมาก ดังนั้น ขนาดของหน้ากล้องที่มาก จะทำให้กล้องได้รับแสงมากกว่า กล้องที่มีขนาดหน้ากล้องน้อย แต่อย่าลืมว่า กล้องที่มีขนาดใหญ่มาก น้ำหนักและการเคลื่อนย้าย ก็อาจเป็นอุปสรรคต่อการใช้งานได้

          2. กำลังขยาย (Power or Magnification): กำลังขยาย ไม่ใช่ ตัวแปรหรือปัจจัยที่สำคัญมากนัก ปกติแล้ว กำลังขยายสูงสุด จะไม่เกิน 50 เท่าของ(ขนาดเส้นผ่านศูนย์กลางของ)กล้อง ในหน่วยนิ้ว (หรือกำลังขยายสูงสุด จะไม่เกิน เท่าของกล้อง ในหน่วยมิลลิเมตร) เช่น กล้องขนาด นิ้ว (6-inch) ควรจะมีกำลังขยายสูงสุดไม่เกิน 300x (300 เท่า) เป็นต้น

          การที่กล้องมีกำลังขยายไม่มากนัก จะทำให้ภาพที่ได้ มีความคมชัดสูง (ดังตัวอย่างภาพต่อมา ทางซ้าย) ขณะที่กล้องที่มีกำลังขยายเกินตัว (เมื่อเทียบกับแสงที่ได้รับ) ก็จะทำให้ภาพเบลอมาก ไม่มีประโยชน์ (ดังตัวอย่างภาพต่อมา ทางขวา) จึงไม่แปลก ที่ท่านอาจพบกล้องโทรทรรศน์ ตามห้างสรรพสินค้า ที่มีขนาดเพียง 2.4 นิ้ว แต่บอกว่า มีกำลังขยายถึง “475 เท่า!” แน่นอนที่สุด … มันเป็นเพียงแค่ของเล่นเท่านั้น

          

    ประเภทของกล้องโทรทรรศน์ กล้องโทรทรรศน์ แบ่งออกได้ ประเภท คือ

         1. กล้องโทรทรรศน์ แบบหักเหแสง (Refractor Telescope) 
    เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการหักเหของแสง ผ่านเลนส์วัตถุ (Objective Lens) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ ค้นพบก่อนที่กาลิเลโอจะนำมาพัฒนา และนิยมใช้จนแพร่หลาย ในสมัยของกาลิเลโอ ซึ่งเหมาะสำหรับ สำรวจพื้นผิวของดวงจันทร์ดาวเคราะห์วงแหวนและดาวบริวารของดาวเคราะห์ เป็นต้น

           ข้อดีของกล้องโทรทรรศน์แบบหักเหแสงนี้ เหมาะสำหรับมือใหม่ เนื่องจาก ราคาถูก (เมื่อเทียบกับแบบอื่น)เคลื่อนย้ายประกอบใช้งานง่ายและเนื่องจากไม่ต้องตั้งอะไรมากนัก ทำให้บำรุงรักษาง่าย นอกจากนี้ โครงสร้างของกล้อง ก็ป้องกันฝุ่นในตัวอยู่แล้ว

          ข้อเสียคือ ขนาดสูงสุดของเลนส์วัตถุไม่มากนัก ซึ่งทั่วไปจะมีขนาดประมาณ 3-5 นิ้ว ดังนั้น จึงไม่สามารถสังเกตวัตถุที่จางมากๆ นอกจากนี้ ขนาดของเลนส์วัตถุที่ใใหญ่มาก จะทำให้ภาพที่ได้มีสีเพี้ยน เนื่องจากการหักเหของแต่ละสี ในสเปคตรัมของแสงไม่เท่ากัน ทำให้ต้องมีการเคลือบเลนส์ (Coating) เพื่อแก้ไข ทำให้ราคาสูงขึ้นอีก และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา ทำให้มือใหม่ ยากต่อการเปรียบเทียบกับแผนที่ฟ้าได้

            2. กล้องโทรทรรศน์ แบบสะท้อนแสง (Refrector Telescope)

    เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการสะท้อนของแสง ผ่านกระจกโค้ง (Concave Objective Mirror) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ พัฒนาโดยไอแซ็ค นิวตัน จึงมีอีกชื่อหนึ่ง คือ กล้องโทรทรรศน์แบบนิวตัน (Newtonian Telescope) ซึ่งเหมาะสำหรับ การสำรวจกระจุกดาวเนบิวลาวัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น 

           กระจกโค้ง จะสะท้อนแสง ให้แสงรวมกันยังจุดโฟกัส จุดเดียว เพื่อทำให้ภาพที่ได้มีความคมชัด ดังนั้น กระจกสะท้อน จึงต้องมีความโค้งแบบพาราโบลา (Parabola) ไม่ใช่โค้งแบบส่วนหนึ่งของทรงกลม (Sphere) (ดูภาพข้างล่างประกอบ)

     ตัวเลข f/ratio (Focal Ratio)

          กล้องแบบนี้ จะมีตัวเลข f/ratio เช่น f/5, f/6, f/16 เป็นต้น ซึ่งตัวเลขหลัง f/ เป็นตัวเลขบอก อัตราส่วนระหว่าง ระยะโฟกัส (ระยะจากกระจกโค้ง ถึงจุดรวมแสง หรือเลนส์ตา) ต่อขนาดของกล้องเช่น กล้องขนาดเส้นผ่านศูนย์กลาง นิ้ว มีระยะโฟกัสเท่ากับ 40 นิ้ว จะมีค่า f/ratio เท่ากับ f/10 เป็นต้น     ตัวเลขที่น้อย เช่น f/5, f/6 กล้องจะมีความยาวน้อยกว่า แต่คุณภาพจะดีสู้กล้องที่มีตัวเลขมากกว่า เช่น f/10 ไม่ได้ แต่กล้องที่มีตัวเลขมากกว่า จะมีความยาวกล้องมากกว่า ทำให้เคลื่อนย้ายลำบากกว่า  และกล้องโทรทรรศน์แบบ Catadioptric ก็อาศัยหลักคำนวณแบบเดียวกัน เพียงแต่ระยะโฟกัส เป็นระยะที่เกิดจากการสะท้อน และหักเหผ่านเลนส์ตาแล้ว เท่านั้น

          ข้อดีของกล้องโทรทรรศน์แบบสะท้อนแสงนี้ เหมาะสำหรับทั่วไป เนื่องจาก ภาพที่ได้มีคุณภาพดีราคาไม่สูงมาก นอกจากนี้ ภาพที่ได้ก็เหมือนจริง (ไม่กลับข้าง) นอกจากนี้ ขนาดของหน้ากล้อง ซึ่งมีความสำคัญต่อการรับแสง กล้องชนิดนี้ ก็มีขนาดให้เลือกมากกว่า

           ข้อเสียคือ กระจกสะท้อนที่สอง (Secondary Mirror or Reflecting Mirror) ที่อยู่ภายในกล้อง ที่ทำหน้าที่สะท้อนภาพมายังเลนส์ตานั้น จะลดพื้นที่รับแสงของกล้องแบบนี้ ทำให้เมื่อขนาดของหน้ากล้องเท่ากัน กล้องแบบหักเหแสงจะรับแสงได้มากกว่า ทำให้เห็นภาพวัตถุที่จางกว่าได้ (แต่กล้องโทรทรรศน์แบบสะท้อนแสง มีขนาดของหน้ากล้องที่ใหญ่กว่าให้เลือกแทน) และกล้องแบบนี้ ก็ต้องการการดูแลรักษา โดยเฉพาะการป้องกันฝุ่น หรือน้ำค้าง เนื่องจากด้านหน้าของกล้อง เปิดออกรับแสงโดยตรง โดยไม่มีอะไรมาปิดไว้

           3. กล้องโทรทรรศน์ แบบ Catadioptric (Catadioptric Telescope) 

    เป็นกล้องโทรทรรศน์ ที่อาศัยทั้งหลักการสะท้อนและการหักเหของแสง เข้าไว้ด้วยกัน ซึ่งกล้องชนิดนี้ ใช้ทั้งกระจกโค้งสะท้อน และเลนส์ในการหักหของแสง และเรียกกล้องชนิดนี้ว่า “Catadioptric” หมายถึง กระจก-เลนส์ (mirror-lens) ตัวอย่างเช่น กล้องแบบ Schmidt-Cassegrain, Maksutov-Cassegrain เป็นต้น กล้องชนิดนี้ จำหน่ายครั้งแรกในยุค ค.ศ. 1970s (ประมาณ 20-30   ปีที่ผ่านมาเท่านั้น) กล้องชนิดนี้ เหมาะสำหรับ การสำรวจกระจุกดาวเนบิวลาวัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น

     

          ข้อดีของกล้องโทรทรรศน์แบบนี้ ทำให้มีขนาดเล็ก (ขณะที่หน้ากล้องใหญ่ขึ้น) ทำให้เคลื่อนย้ายสะดวกขนาดที่ของกล้องสั้น   ทำให้ติดตั้งมอเตอร์ติดตามดาวได้ง่าย เนื่องจากน้ำหนักสมดุลกว่า และติดตั้งอุปกรณ์ประกอบได้ง่าย เช่น กล้อง CCD สำหรับถ่ายภาพ เป็นต้น

          ข้อเสียคือ ราคาที่สูงกว่ากล้องแบบอื่นๆ (ในขนาดที่เท่ากัน) และภาพที่ได้ มีความคมสู้แบบสะท้อนแสงไม่ได้ (ในขนาดที่เท่ากัน) เนื่องจาก เลนส์ตาที่ทำหน้าที่หักเหแสง และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา เช่นเดียวกับกล้องโทรทรรศน์แบบหักเหแสง ทำให้ยากต่อการเปรียบเทียบ กับแผนที่ฟ้าได้

     

    หลักการส่งดาวเทียม   

        

    การส่งดาวเทียมออกนอกโลก อาศัยกฎเกณฑ์ธรรมชาติที่มนุษย์ได้ศึกษาจนพบความจริง เช่น กฎของนิวตัน เช่น กฎเกี่ยวกับการเคลื่อนที่ (Law of motion) และกฎแห่งความโน้มถ่วง (Low of gravitational)

            การที่จะส่งดาวเทียมขึ้นไปได้จะต้องมีความเร็วที่พอเหมาะ คือ ความเร็ว 5 ไมล์ต่อวินาที หรือ 18,000 ไมล์ต่อชั่วโมง วัตถุก็จะเคลื่อนที่เป็นวงกลม และวัตถุจะไม่มีโอกาสตกถึงพื้นดินอีกเลย และจะเคลื่อนที่อยู่ในความสูงประมาณ 200-300 กิโลเมตร หรือ 124-186 ไมล์ จากพื้นผิวโลก ถ้าวัตถุเริ่มเคลื่อนที่มีความเร็วมากกว่า 5 ไมล์ต่อวินาที จะได้วงโคจรแบบวงรีซึ่งใช้สำหรับส่งยานอวกาศไปสำรวจดวงจันทร์ ถ้าหากมีความเร็วต้นเพิ่มขึ้นถึง 7ไมล์ต่อวินาทีจะได้วงโคจรที่เรียกว่า พาราโบลา ถ้ามีความเร็วมากกว่า 7 ไมล์ต่อวินาที วงโคจรจะเป็นแบบ ไฮเพอร์โบลา ความเร็ว 7 ไมล์ต่อวินาทีที่ทำให้วัตถุหลุดออกไปจากโลก เรียกว่า ความเร็วหลุดพ้น (Escape velocity)

            ดาวเทียมโคจรรอบโลกได้เพราะมีแรง 2 แรงที่สมดุลกันพอดี คือ ในขณะที่ดาวเทียมเคลื่อนที่เป็นทางโค้ง จะมีแรงสู่ศูนย์กลาง (Centripetal force) และ แรงหนีศูนย์กลาง (Centrifugal force) เกิดขึ้น

            1. แรงสู่ศูนย์กลาง เป็นแรงดึงดูดที่เกิดขึ้นระหว่างโลกกับดาวเทียมตามกฎแห่งความโน้มถ่วงของกฎนิวตัน ที่กล่าวไว้ว่า “แรงดึงดูดระหว่างวัตถุที่มีมวลสาร 2 ชิ้นจะเป็นปฏิภาคโดยตรงกับผลคูณของมวลทั้งสอง และเป็นปฏิภาคกลับกับกำลังสองของระยะทางระหว่างวัตถุทั้งสอง

            2. แรงหนีศูนย์กลาง เกิดจากวัตถุเคลื่อนที่เป็นทางโค้งหรือเป็นวงกลม ถ้าหากดาวเทียมโคจรอยู่ห่างจากโลกมากๆความเร็วของดาวเทียมก็จะลดลงด้วย ความเร็วที่ต้องการเพื่อให้ดาวเทียมขึ้นไปโคจรตามระยะห่างที่ต้องการนั้นเรียกว่าความเร็วตามวงทางโคจร (Orbital velocity)

            ดาวเทียมที่โคจรอยู่ห่างจากโลกมากเท่าไรก็จะเสียเวลาในการโคจรรอบโลกมากขึ้น เพราะความเร็วของดาวเทียมลดลง และระยะทางในการโคจรเพิ่มมากขึ้น

     

    วงโคจรของดาวเทียม

            การออกแบบวงโคจรของดาวเทียมขึ้นอยู่กับวัตถุประสงค์ของการใช้งานดาวเทียม ระดับความสูงของดาวเทียมมีความสัมพันธ์กับคาบเวลาในวงโคจรตามกฎของเคปเลอร์ข้อที่ 3 (กำลังสองของคาบวงโคจรของดาวเทียม แปรผันตาม กำลังสามของระยะห่างจากโลกดังนั้น ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วในวงโคจรค่าหนึ่ง มิฉะนั้นดาวเทียมอาจตกสู่โลกหรือหลุดจากวงโคจรรอบโลก ดาวเทียมวงโคจรต่ำเคลื่อนที่เร็ว ดาวเทียมวงโคจรสูงเคลื่อนที่ช้า 

     

            นักวิทยาศาสตร์คำนวณหาค่าความเร็วในวงโคจรได้โดยใช้ “กฎความโน้มถ่วงแห่งเอกภพของนิวตัน” (Newton's Law of Universal Gravitation) “วัตถุสองชิ้นดึงดูดกันด้วยแรงซึ่งแปรผันตามมวลของวัตถุ แต่แปรผกผันกับระยะทางระหว่างวัตถุยกกำลังสอง” ดังนี้ 

     

                    แรงสู่ศูนย์กลาง = แรงโน้มถ่วงของโลก 

                           mv2/r      = G (Mm/r2) 

                                   v    =  (GM/r)1/2 

     

    โดยที่ v = ความเร็วของดาวเทียม

              M = มวลของโลก

              m = มวลของดาวเทียม

              r = ระยะทางระหว่างศูนย์กลางของโลกกับดาวเทียม

              G = ค่าคงที่ของแรงโน้มถ่วง = 6.67 x 10-11 Nm2/kg2

     

    ตัวอย่างที่ ถ้าต้องการส่งดาวเทียมให้โคจรรอบโลกที่ระดับสูง 35,780 กิโลเมตร ดาวเทียมจะต้องมีความเร็วในวงโคจรเท่าไร  

                                          r  = 6,380 km (รัศมีโลก) + 35,786 km (ระยะสูงของวงโคจร) = 4.23 x 107 km 

                                          v  =  (GM/r)1/2   

                                              =  {(6.67 x 10-11 Nm2/kg2)(5.98 x 1028 kg)/(4.23 x 107)} 1/2
                                              =  11,052 กิโลเมตร

     

     

    ตารางที่ ความสัมพันธ์ระหว่างระดับสูงของดาวเทียมกับคาบวงโคจรรอบโลก

     ความสูงจากผิวโลก 
    (กิโลเมตร)

     ความเร็วในวงโคจร 
    (กิโลเมตรต่อชั่วโมง)

     คาบเวลาในการโคจรรอบโลก 1     รอบ

     160
    1,609
    35,786

     28,102
    25,416
    11,052

     1 ชั่วโมง 27.7 นาที
    ชั่วโมง 57.5 นาที
    24 ชั่วโมง

     

            ข้อมูลในตารางที่ แสดงให้เห็นถึงความสัมพันธ์ระหว่างระดับความสูงของดาวเทียมและความเร็วในวงโคจร  กฎแปรผกผันยกกำลังสองของนิวตันกล่าวว่า ยิ่งใกล้ศูนย์กลางของแรงโน้มถ่วง (ศูนย์กลางของโลก) แรงโน้มถ่วงจะเพิ่มขึ้น  ดังนั้น 

    ถ้าต้องการให้ดาวเทียมมีวงโคจรต่ำ ดาวเทียมจะต้องเคลื่อนที่เร็วมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก ดาวเทียมวงโคจร ดาวเทียมวงโคจรต่ำจึงโคจรรอบโลกใช้เวลาน้อยที่สุด 

    ดาวเทียมวงโคจรสูงมีความเร็วในวงโคจรช้ากว่าวงโคจรต่ำ ทั้งนี้เนื่องจากสูงขึ้นไป ยิ่งอยู่ห่างจากศูนย์กลางแรงโน้มถ่วง ดาวเทียมวงโคจรสูงจึงโคจรรอบโลกใช้เวลามากกว่าดาวเทียมวงโคจรต่ำ 

    ถ้าต้องการให้ดาวเทียมโคจรไปพร้อมๆ กับที่โลกหมุนรอบตัวเอง ดาวเทียมจะลอยค้างอยู่เหนือพิกัดภูมิศาสตร์ที่ระบุบนพื้นผิวโลกตลอดเวลา จะต้องส่งดาวเทียมให้อยู่ที่ความสูง 35,786 กิโลเมตร เหนือพื้นผิวโลก วงโคจรระดับนี้เรียกว่า "วงโคจรค้างฟ้า" (Geo-Stationary orbit) ซึ่งเหมาะสำหรับใช้ในการสะท้อนสัญญาณโทรคมนาคม และการถ่ายภาพที่ครอบคลุมบริเวณกว้าง   

     

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/satellite-orbits.png?height=135&width=200

     ภาพที่ วงโคจรประเภทต่างๆ 

            

            ในการออกแบบวงโคจรของดาวเทียม  นอกจากความสูงของวงโคจรแล้ว  ยังต้องคำนึงถึงทิศทางของวงโคจร เนื่องโลกหมุนรอบตัวเอง  นักวิทยาศาสตร์จะต้องคำนึงถึงพื้นที่บนพื้นผิวโลกที่ต้องการให้ดาวเทียมเคลื่อนที่ผ่าน  เราสามารถจำแนกประเภทของวงโคจร ตามระยะสูงของวงโคจรได้ดังนี้ 

    วงโคจรระยะต่ำ (Low Earth Orbit "LEO") อยู่สูงจากพื้นโลกไม่เกิน 1,000 กมเหมาะสำหรับการถ่ายภาพรายละเอียดสูง ติดตามสังเกตการณ์อย่างใกล้ชิด  แต่เนื่องจากวงโคจรประเภทนี้อยู่ใกล้พื้นผิวโลกมาก ภาพถ่ายที่ได้จึงครอบคลุมพื้นที่เป็นบริเวณแคบ และไม่สามารถครอบคลุมบริเวณใดบริเวณหนึ่งได้นาน เนื่องจากดาวเทียมต้องเคลื่อนที่ด้วยความเร็วสูงมาก  ดาวเทียมวงโคจรต่ำจึงนิยมใช้วงโคจรขั้วโลก (Polar  Orbit) หรือใกล้ขั้วโลก (Near Polar Orbit)  ดาวเทียมจะโคจรในแนวเหนือ-ใต้ ขณะที่โลกหมุนรอบตัวเอง ดาวเทียมจึงเคลื่อนที่ผ่านเกือบทุกส่วนของพื้นผิวโลก ดังที่แสดงในภาพที่ 2http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/polar_orbit_stripe.gif?height=190&width=200

    ภาพที่ การสแกนถ่ายภาพของดาวเทียมวงโคจรขั้วโลก

        วงโคจรระยะปานกลาง (Medium Earth Orbit "MEO") อยู่ที่ระยะความสูงตั้งแต่ 1,000 กิโลเมตร จนถึง 35,000 กิโลเมตร  สามารถถ่ายภาพและส่งสัญญาณวิทยุได้ครอบคลุมพื้นที่ได้เป็นบริเวณกว้างกว่าดาวเทียมวงโคจรต่ำ  แต่หากต้องการสัญญาณให้ครอบคลุมทั้งโลกจะต้องใช้ดาวเทียมหลายดวงทำงานร่วมกันเป็นเครือข่ายและมีทิศทางของวงโคจรรอบโลกทำมุมเฉียงหลายๆ ทิศทาง  ดาวเทียมที่มีวงโคจรระยะปานกลางส่วนมากเป็นดาวเทียมนำร่อง เช่น เครือข่ายดาวเทียม GPS ประกอบด้วยดาวเทียมจำนวน 24 ดวง  ทำงานร่วมกันดังภาพที่ โดยส่งสัญญาณวิทยุออกมาพร้อมๆ กัน ให้เครื่องรับที่อยู่บนพื้นผิวโลกเปรียบเทียบสัญญาณจากดาวเทียมแต่ละดวง เพื่อคำนวณหาตำแหน่งพิกัดที่ตั้งของเครื่องรับ 

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/gps-const.jpg?height=200&width=200
    ภาพที่ เครือข่ายดาวเทียม GPS
     

    วงโคจรประจำที่ (Geosynchonus Earth Orbit "GEO") อยู่สูงจากพื้นโลกประมาณ 35,786 กมมีเส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร (Equatorial Orbit) ดาวเทียมจะหมุนรอบโลกด้วยความเร็วเชิงมุมเท่ากับโลกหมุนรอบตัวเองทำให้ดูเหมือนลอยนิ่งอยู่เหนือพื้นผิวโลกตำแหน่งเดิมอยู่ตลอดเวลา จึงถูกเรียกว่า "ดาวเทียมวงโคจรค้างฟ้า" (Geo-stationary Earth Orbit "GSO")  เนื่องจากดาวเทียมวงโคจรชนิดนี้อยู่ห่างไกลจากโลกและสามารถลอยอยู่เหนือพื้นโลกตลอดเวลา จึงนิยมใช้สำหรับการถ่ายภาพโลกทั้งดวง เฝ้าสังเกตการณ์เปลี่ยนแปลงของบรรยากาศ  และใช้ในการโทรคมนาคมข้ามทวีป  อย่างไรก็ตามดาวเทียมวงโคจรค้างฟ้าจะต้องลอยอยู่ที่ระดับสูง 35,786 กิโลเมตรเท่านั้น  วงโคจรแบบนี้จึงมีดาวเทียมอยู่หนาแน่น และกำลังจะมีปัญหาการแย่งพื้่นที่ในอวกาศ

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/geostationary_orbit.gif?height=102&width=200

    ภาพที่ ดาวเทียมวงโคจรประจำที่ 

             วงโคจรูปวงรี (Highly Elliptical Orbit "HEO") เป็นวงโคจรออกแบบสำหรับดาวเทียมที่ปฏิบัติภารกิจพิเศษเฉพาะกิจ  เนื่องจากดาวเทียมความเร็วในวงโคจรไม่คงที่  เมื่ออยู่ใกล้โลกดาวเทียมจะเคลื่อนที่ใกล้โลกมาก และเคลื่อนที่ช้าลงเมื่อออกห่างจากโลกตามกฎข้อที่ ของเคปเลอร์  ดาวเทียมวงโคจรรูปวงรี ส่วนมากเป็นดาวเทียมที่ปฏิบัติงานด้านวิทยาศาสตร์ เช่น ศึกษาสนามแม่เหล็กโลก เนื่องจากสามารถมีระยะห่างจากโลกได้หลายระยะดังภาพที่ 5  หรือเป็นดาวเทียมจารกรรมซึ่งสามารถบินโฉบเข้ามาถ่ายภาพพื้นผิวโลกด้วยระยะต่ำมากและปรับวงโคจรได้    

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/rosetta_earth_swing.jpg?height=294&width=320

    ภาพที่ วงโคจรรูปวงรีของดาวเทียมสำรวจสนามแม่เหล็กโลก

     วงโคจรของดาวเทียม

            การออกแบบวงโคจรของดาวเทียมขึ้นอยู่กับวัตถุประสงค์ของการใช้งานดาวเทียม ระดับความสูงของดาวเทียมมีความสัมพันธ์กับคาบเวลาในวงโคจรตามกฎของเคปเลอร์ข้อที่ 3 (กำลังสองของคาบวงโคจรของดาวเทียม แปรผันตาม กำลังสามของระยะห่างจากโลกดังนั้น ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วในวงโคจรค่าหนึ่ง มิฉะนั้นดาวเทียมอาจตกสู่โลกหรือหลุดจากวงโคจรรอบโลก ดาวเทียมวงโคจรต่ำเคลื่อนที่เร็ว ดาวเทียมวงโคจรสูงเคลื่อนที่ช้า 

     

            นักวิทยาศาสตร์คำนวณหาค่าความเร็วในวงโคจรได้โดยใช้ “กฎความโน้มถ่วงแห่งเอกภพของนิวตัน” (Newton's Law of Universal Gravitation) “วัตถุสองชิ้นดึงดูดกันด้วยแรงซึ่งแปรผันตามมวลของวัตถุ แต่แปรผกผันกับระยะทางระหว่างวัตถุยกกำลังสอง” ดังนี้ 

     

                    แรงสู่ศูนย์กลาง = แรงโน้มถ่วงของโลก 

                           mv2/r      = G (Mm/r2) 

                                   v    =  (GM/r)1/2 

     

    โดยที่ v = ความเร็วของดาวเทียม

              M = มวลของโลก

              m = มวลของดาวเทียม

              r = ระยะทางระหว่างศูนย์กลางของโลกกับดาวเทียม

              G = ค่าคงที่ของแรงโน้มถ่วง = 6.67 x 10-11 Nm2/kg2

     

    ตัวอย่างที่ ถ้าต้องการส่งดาวเทียมให้โคจรรอบโลกที่ระดับสูง 35,780 กิโลเมตร ดาวเทียมจะต้องมีความเร็วในวงโคจรเท่าไร  

                                          r  = 6,380 km (รัศมีโลก) + 35,786 km (ระยะสูงของวงโคจร) = 4.23 x 107 km 

                                          v  =  (GM/r)1/2   

                                              =  {(6.67 x 10-11 Nm2/kg2)(5.98 x 1028 kg)/(4.23 x 107)} 1/2
                                              =  11,052 กิโลเมตร

     

     

    ตารางที่ ความสัมพันธ์ระหว่างระดับสูงของดาวเทียมกับคาบวงโคจรรอบโลก

     ความสูงจากผิวโลก 
    (กิโลเมตร)

     ความเร็วในวงโคจร 
    (กิโลเมตรต่อชั่วโมง)

     คาบเวลาในการโคจรรอบโลก 1     รอบ

     160
    1,609
    35,786

     28,102
    25,416
    11,052

     1 ชั่วโมง 27.7 นาที
    ชั่วโมง 57.5 นาที
    24 ชั่วโมง

     

            ข้อมูลในตารางที่ แสดงให้เห็นถึงความสัมพันธ์ระหว่างระดับความสูงของดาวเทียมและความเร็วในวงโคจร  กฎแปรผกผันยกกำลังสองของนิวตันกล่าวว่า ยิ่งใกล้ศูนย์กลางของแรงโน้มถ่วง (ศูนย์กลางของโลก) แรงโน้มถ่วงจะเพิ่มขึ้น  ดังนั้น 

    ถ้าต้องการให้ดาวเทียมมีวงโคจรต่ำ ดาวเทียมจะต้องเคลื่อนที่เร็วมาก เพื่อเอาชนะแรงโน้มถ่วงของโลก ดาวเทียมวงโคจร ดาวเทียมวงโคจรต่ำจึงโคจรรอบโลกใช้เวลาน้อยที่สุด 

    ดาวเทียมวงโคจรสูงมีความเร็วในวงโคจรช้ากว่าวงโคจรต่ำ ทั้งนี้เนื่องจากสูงขึ้นไป ยิ่งอยู่ห่างจากศูนย์กลางแรงโน้มถ่วง ดาวเทียมวงโคจรสูงจึงโคจรรอบโลกใช้เวลามากกว่าดาวเทียมวงโคจรต่ำ 

    ถ้าต้องการให้ดาวเทียมโคจรไปพร้อมๆ กับที่โลกหมุนรอบตัวเอง ดาวเทียมจะลอยค้างอยู่เหนือพิกัดภูมิศาสตร์ที่ระบุบนพื้นผิวโลกตลอดเวลา จะต้องส่งดาวเทียมให้อยู่ที่ความสูง 35,786 กิโลเมตร เหนือพื้นผิวโลก วงโคจรระดับนี้เรียกว่า "วงโคจรค้างฟ้า" (Geo-Stationary orbit) ซึ่งเหมาะสำหรับใช้ในการสะท้อนสัญญาณโทรคมนาคม และการถ่ายภาพที่ครอบคลุมบริเวณกว้าง   

     

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/satellite-orbits.png?height=135&width=200 

    ภาพที่ วงโคจรประเภทต่างๆ         

            ในการออกแบบวงโคจรของดาวเทียม  นอกจากความสูงของวงโคจรแล้ว  ยังต้องคำนึงถึงทิศทางของวงโคจร เนื่องโลกหมุนรอบตัวเอง  นักวิทยาศาสตร์จะต้องคำนึงถึงพื้นที่บนพื้นผิวโลกที่ต้องการให้ดาวเทียมเคลื่อนที่ผ่าน  เราสามารถจำแนกประเภทของวงโคจร ตามระยะสูงของวงโคจรได้ดังนี้ 

    วงโคจรระยะต่ำ (Low Earth Orbit "LEO") อยู่สูงจากพื้นโลกไม่เกิน 1,000 กมเหมาะสำหรับการถ่ายภาพรายละเอียดสูง ติดตามสังเกตการณ์อย่างใกล้ชิด  แต่เนื่องจากวงโคจรประเภทนี้อยู่ใกล้พื้นผิวโลกมาก ภาพถ่ายที่ได้จึงครอบคลุมพื้นที่เป็นบริเวณแคบ และไม่สามารถครอบคลุมบริเวณใดบริเวณหนึ่งได้นาน เนื่องจากดาวเทียมต้องเคลื่อนที่ด้วยความเร็วสูงมาก  ดาวเทียมวงโคจรต่ำจึงนิยมใช้วงโคจรขั้วโลก (Polar  Orbit) หรือใกล้ขั้วโลก (Near Polar Orbit)  ดาวเทียมจะโคจรในแนวเหนือ-ใต้ ขณะที่โลกหมุนรอบตัวเอง ดาวเทียมจึงเคลื่อนที่ผ่านเกือบทุกส่วนของพื้นผิวโลก ดังที่แสดงในภาพที่ 2http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/polar_orbit_stripe.gif?height=190&width=200

    ภาพที่ การสแกนถ่ายภาพของดาวเทียมวงโคจรขั้วโลก

    วงโคจรระยะปานกลาง (Medium Earth Orbit "MEO") อยู่ที่ระยะความสูงตั้งแต่ 1,000 กิโลเมตร จนถึง 35,000 กิโลเมตร  สามารถถ่ายภาพและส่งสัญญาณวิทยุได้ครอบคลุมพื้นที่ได้เป็นบริเวณกว้างกว่าดาวเทียมวงโคจรต่ำ  แต่หากต้องการสัญญาณให้ครอบคลุมทั้งโลกจะต้องใช้ดาวเทียมหลายดวงทำงานร่วมกันเป็นเครือข่ายและมีทิศทางของวงโคจรรอบโลกทำมุมเฉียงหลายๆ ทิศทาง  ดาวเทียมที่มีวงโคจรระยะปานกลางส่วนมากเป็นดาวเทียมนำร่อง เช่น เครือข่ายดาวเทียม GPS ประกอบด้วยดาวเทียมจำนวน 24 ดวง  ทำงานร่วมกันดังภาพที่ โดยส่งสัญญาณวิทยุออกมาพร้อมๆ กัน ให้เครื่องรับที่อยู่บนพื้นผิวโลกเปรียบเทียบสัญญาณจากดาวเทียมแต่ละดวง เพื่อคำนวณหาตำแหน่งพิกัดที่ตั้งของเครื่องรับ 

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/gps-const.jpg?height=200&width=200
    ภาพที่ เครือข่ายดาวเทียม GPS
     

    วงโคจรประจำที่ (Geosynchonus Earth Orbit "GEO") อยู่สูงจากพื้นโลกประมาณ 35,786 กมมีเส้นทางโคจรอยู่ในแนวเส้นศูนย์สูตร (Equatorial Orbit) ดาวเทียมจะหมุนรอบโลกด้วยความเร็วเชิงมุมเท่ากับโลกหมุนรอบตัวเองทำให้ดูเหมือนลอยนิ่งอยู่เหนือพื้นผิวโลกตำแหน่งเดิมอยู่ตลอดเวลา จึงถูกเรียกว่า "ดาวเทียมวงโคจรค้างฟ้า" (Geo-stationary Earth Orbit "GSO")  เนื่องจากดาวเทียมวงโคจรชนิดนี้อยู่ห่างไกลจากโลกและสามารถลอยอยู่เหนือพื้นโลกตลอดเวลา จึงนิยมใช้สำหรับการถ่ายภาพโลกทั้งดวง เฝ้าสังเกตการณ์เปลี่ยนแปลงของบรรยากาศ  และใช้ในการโทรคมนาคมข้ามทวีป  อย่างไรก็ตามดาวเทียมวงโคจรค้างฟ้าจะต้องลอยอยู่ที่ระดับสูง 35,786 กิโลเมตรเท่านั้น  วงโคจรแบบนี้จึงมีดาวเทียมอยู่หนาแน่น และกำลังจะมีปัญหาการแย่งพื้่นที่ในอวกาศ

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/geostationary_orbit.gif?height=102&width=200

    ภาพที่ ดาวเทียมวงโคจรประจำที่ 

               วงโคจรูปวงรี (Highly Elliptical Orbit "HEO") เป็นวงโคจรออกแบบสำหรับดาวเทียมที่ปฏิบัติภารกิจพิเศษเฉพาะกิจ  เนื่องจากดาวเทียมความเร็วในวงโคจรไม่คงที่  เมื่ออยู่ใกล้โลกดาวเทียมจะเคลื่อนที่ใกล้โลกมาก และเคลื่อนที่ช้าลงเมื่อออกห่างจากโลกตามกฎข้อที่ 2ของเคปเลอร์  ดาวเทียมวงโคจรรูปวงรี ส่วนมากเป็นดาวเทียมที่ปฏิบัติงานด้านวิทยาศาสตร์ เช่น ศึกษาสนามแม่เหล็กโลก เนื่องจากสามารถมีระยะห่างจากโลกได้หลายระยะดังภาพที่ 5  หรือเป็นดาวเทียมจารกรรมซึ่งสามารถบินโฉบเข้ามาถ่ายภาพพื้นผิวโลกด้วยระยะต่ำมากและปรับวงโคจรได้    

    http://www.lesa.biz/_/rsrc/1380683772321/space-technology/satellite/orbits/rosetta_earth_swing.jpg?height=294&width=320

    ภาพที่ วงโคจรรูปวงรีของดาวเทียมสำรวจสนามแม่เหล็กโลก


     ระบบการขนส่งอวกาศ
         ระบบการขนส่งอวกาศเป็นโครงการที่ถูกออกแบบให้สามารถนำชิ้นส่วนบางส่วนที่ใช้ไปแล้วกลับมาใช้ใหม่อีกเพื่อเป็นการประหยัดและมีประสิทธิภาพมากที่สุด ประกอบด้วย 3 ส่วนหลัก คือ จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก (สำรองไฮโดรเจนเหลวและออกซิเจนเหลว) และยานอวกาศ

                                             ส่วนประกอบของระบบขนส่งอวกาศ ยานอวกาศ
           ระบบขนส่งอวกาศมีน้ำหนักรวมเมื่อขึ้นจากฐานปล่อยประมาณ 2,041,200 กิโลกรัม โดยจรวดเชื้อเพลิงแข็งจะถูกขับเคลื่อนจากฐานปล่อยให้นำพาทั้งระบบขึ้นสู่อวกาศด้วยความเร็วที่มากกว่าค่าความเร็วหลุดพ้น เมื่อถึงระดับหนึ่งจรวดเชื้อเพลิงแข็งทั้งสองข้างจะแยกตัวออกมาจากระบบ จากนั้นถังเชื้อเพลิงภายนอกจะแยกตัวออกจากยานอวกาศ โดยตัวยานอวกาศจะเข้าสู่วงโคจรเพื่อปฏิบัติภารกิจต่อไป ดังรูป


    ระบบขนส่งอวกาศ

          การปฏิบัติภารกิจสำหรับระบบขนส่งอวกาศมีหลากหลายหน้าที่ ตั้งแต่การทดลองทางวิทยาศาสตร์ (ในสภาวะไร้น้ำหนัก) การส่งดาวเทียม การประกอบกล้องโทรทรรศน์อวกาศ การส่งมนุษย์ไปบนสถานีอวกาศ ฯลฯ ยานอวกาศจึงถูกออกแบบสำหรับบรรทุกคนได้ประมาณ 7-10 คน ปฏิบัติภารกิจได้นานตั้งแต่ไม่กี่ชั่วโมงหรืออาจใช้เวลาถึง 1 เดือน สำหรับโครงการขนส่งอวกาศขององค์การนาซามีอยู่ด้วยกัน 6 โครงการ คือ

         1. โครงการเอนเตอร์ไพรส์

         2. โครงการโคลัมเบีย

         3. โครงการดิสคัฟเวอรี

         4. โครงการแอตแลนติส

         5. โครงการแชลแลนเจอร์

         6. โครงการเอนเดฟเวอร์

         ปัจจุบันเป็นที่ทราบกันว่าโครงการแชลแลนเจอร์และโครงการโคลัมเบียประสบความสูญเสียครั้งร้ายแรง เมื่อยานทั้งสองเกิดระเบิดขึ้นขณะอยู่บนท้องฟ้า โดยระบบขนส่งอวกาศแชลแลนเจอร์ระเบิดเมื่อวันที่ 28 มกราคม 2529 ระหว่างเดินทางขึ้นสู่อวกาศไม่เพียงกี่นาทีด้วยสาเหตจากการรั่วไหลของก๊าซเชื้อเพลิงอุณหภูมิสูงจากรอยต่อของจรวดเชื้อเพลิงแข็งด้านขวาของตัวยาน ทำให้ก๊าซอุณหภูมิสูงดังกล่าวลามไปถึงถังเชื้อเพลิงภายนอกที่บรรจุไฮโดรเจนเหลว จึงเกิดการเผาไหม้อย่างรุนแรงและเกิดระเบิดขึ้น คร่าชีวิตนักบินอวกาศ 7 คน ส่วนระบบขนส่งอวกาศโคลัมเบียเกิดระเบิดขึ้นเมื่อวันที่ กุมภาพันธ์ 2546 (17 ปี หลังการระเบิดของยานแชลแลนเจอร์) โดยวิศวกรนาซาเชื่อว่าอาจเพราะตัวยานมีการใช้งานยาวนานจนอาจทำให้แผ่นกันความร้อนที่หุ้มยานชำรุด ทำให้เกิดระเบิดขึ้นหลังจากนักบินกำลังพยายามร่อนลงสู่พื้นโลก แต่ทั้งสองเหตุการณ์ในสหรัฐอเมริกายังไม่ร้ายแรงเท่าเหตุการณ์ระเบิดของจรวดของสหภาพโซเวียตขณะยังอยู่ที่ฐาน เมื่อวันที่ 24 ตุลาคม 2503 โดยมีผู้เสียชีวิตจากเหตุการณ์ดังกล่าวถึง 165 คน โศกนาฏกรรมเหล่านี้ที่เกิดขึ้นแม้จะทำให้เกิดความสูญเสียทั้งชีวิตและทรัพย์สิน แต่มนุษย์ก็ยังไม่เลิกล้มโครงการอวกาศ ยังมีความพยายามคิดและสร้างเทคโนโลยีใหม่ๆ เพื่อความปลอดภัยและลดค่าใช้จ่ายให้มากขึ้น ด้วยเป้าหมายหลักของโครงการขนส่งอวกาศในอนาคตคือการสร้างสถานีอวกาศถาวรและการทดลองทางวิทยาศาสตร์อื่นๆ


    การใช้ประโยชน์จากเทคโนโลยีอวกาศ


    1. มีการใช้ความรู้ทางวิทยาศาสตร์ในการศึกษา พัฒนา และประดิษฐ์อุปกรณ์ถ่ายภาพในช่วงคลื่น ๆ จากระยะไกล

    2. ทำให้เครื่องรับและส่งสัญญาณมีประสิทธิภาพมากขึ้น แล้วนำอุปกรณ์และเครื่องส่งสัญญาณไปประกอบเป็นดาวเทียม ที่ถูกส่งขึ้นไปโคจรจรอบโลก

    3. ทำให้สามารถสังเกตสิ่งต่าง ๆ บนโลกได้ระยะไกลในเวลาอันรวดเร็ว

    4. ได้เรียนรู้สิ่งต่าง ๆ เกี่ยวกับเอกภพ โลก ดวงจันทร์ และดาวอื่น ๆ

    5. ความก้าวหน้าด้านเทคโนโลยีอวกาศ ช่วยเปิดเผยความลี้ลับในอดีต และก่อให้เกิดประโยชน์ต่อมนุษย์ในด้านต่าง ๆ มากมาย

    ความก้าวหน้าของการสำรวจอวกาศอาจทำให้เกิดผลดี   ดังนี้

    • มนุษย์มีความรู้ความเข้าใจเกี่ยวกับปรากฏการณ์ทางดาราศาสตร์ดีขึ้น และช่วยเปิดเผยความลี้ลับของวัตถุท้องฟ้าในอดีต
    • เทคโนโลยีอวกาศได้รับการพัฒนาและนำมาใช้ในชีวิตประจำวัน เช่น เซลล์เชื้อเพลิง (fuel cell) เซลล์สุริยะ (solar cell) เป็นต้น

    ภาพเซลล์เชื้อเพลิง

    http://www.krugoo.net/wp-content/uploads/2010/08/fuel_cell1.jpg

    ภาพเซลล์สุริยะ

    http://www.krugoo.net/wp-content/uploads/2010/08/solar-cell4.jpg

    • มนุษย์เกิดจินตนาการอันกว้างไกล มีความคิดสร้างสรรค์เกี่ยวกับความเป็นมาของปรากฏการณ์ทางดาราศาสตร์
    • เกิดแนวคิดในการค้นคว้าหาทรัพยากรจากอวกาศ และหาแหล่งที่อยู่ใหม่นอกโลกเมื่อเกิดปัญหาอัตราการเพิ่มประชากรมนุษย์จนขาด แหล่งที่อยู่อาศัย ในขณะเดียวกันความก้าวหน้าของการสำรวจอวกาศอาจทำให้เกิดผลเสีย ดังนี้
    • ค่าใช้จ่ายในการสำรวจอวกาศสูง
    • ในการส่งจรวดหรือยานอวกาศขึ้นสู่อวกาศมีผลกระทบกับชั้นบรรยากาศของโลก
    • ปัญหาดาวเทียมหรือยานอวกาศที่หมดอายุการใช้งานกลายเป็นขยะอวกาศ
    • การส่งจรวดขึ้นสู่อวกาศบางครั้งเกิดความผิดพลาด ทำให้สูญเสียชีวิตของนักบินอวกาศ

    ความก้าวหน้าทางด้านอวกาศอาจเป็นสาเหตุให้เกิดการใช้เทคโนโลยีในด้านการทำลาย

    ดาวเทียมอุตุนิยมวิทยา 
           เป็นดาวเทียมที่มีอุปกรณ์ถ่ายภาพเมฆ   และเก็บข้อมูลของบรรยากาศในระดับสูง   ช่วยให้ได้ข้อมูลที่สำคัญในการพยากรณ์อากาศได้อย่างถูกต้อง   รวดเร็วรวมถึงการเฝ้าสังเกตการก่อตัว   การเปลี่ยนแปลง และการเคลื่อนตัวของพายุที่เกิดขึ้นบนโลก   ช่วยป้องกันหรือบรรเทาความเสียหายรุนแรงที่เกิดขึ้นได้อย่างมาก  ข้อมูลจากดาวเทียมเป็นข้อมูลสำคัญมากในการพยากรณ์อากาศ

    http://www.vcharkarn.com/userfiles/213156/1%20%28103%29%281%29.jpg
    ภาพถ่ายเมฆจากดาวเทียม GMS-5 (ถ่ายเมื่อ 3 ก.พ. 2546)
    ดาวเทียมสำรวจทรัพยากรโลก
           เป็นดาวเทียมที่มีอุปกรณ์สำรวจแหล่งทรัพยากรณ์ที่สำคัญ   นอกจากนี้ยังเฝ้าสังเกตสภาพแวดล้อมที่เกิดบนโลก   ช่วยเตือนอุทกภัย และความแห้งแล้งที่เกิดขึ้น   การตัดไม้ทำลายป่า การทับถมของตะกอนปากแม่น้ำ รวมไปถึงแหล่งที่มีปลาชุกชุม    
    http://www.vcharkarn.com/userfiles/213156/1%20%28104%29%281%29.jpg

    ภาพถ่ายดาวเทียมบริเวณโรงกรองน้ำ และผลิตน้ำประชาชื่น   และนอร์ธปาร์ค จากดาวเทียม IRS-ID ถ่ายเมื่อ 24 ก.พ. 2544 หลอมกับภาพจาก Landsat-7 ETM + ถ่ายเมื่อ 24 ม.ค. 2545


    ดาวเทียมสังเกตการณ์ดาราศาสตร์   

          เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษาวัตถุท้อง ฟ้า   ดาวเทียมสังเกตการณ์ดาราศาสตร์มีทั้งหมดที่โคจรอยู่รอบโลกและประเภทที่โคจร ผ่านไปใกล้ดาวเคราะห์   หรือลงสำรวจดาวเคราะห์   ซึ่งเรีกยอีกอย่างว่ายานอวกาศ เช่นยานอวกาศวอยเอเจอร์ที่เดินทางผ่านเฉียดดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูล เป็นต้น

    ดาวเทียมสื่อสาร
         เป็นดาวเทียมที่มีอุปกรณ์สื่อสารติดตั้งอยู่ เช่น ดาวเทียมอินเทลแซท (ภาพ 7.6 ) ดาวเทียมชุดนี้อยู่ในวงโคจรรอบโลก 3 แห่ง คือเหมือนมหาสมุทรอินเดียเพื่อการติดต่อระหว่างทวีปยุโรปเหนือมหาสมุทร แปซิฟิกเพื่อการติดต่อระหว่างทวีปเอเชียกับทวีปอเมริกา และและเหนือมหาสมุทรแอตแลนติกเพื่อการติดต่อระหว่างทวีปอเมริกากับทวีป ยุโรป   เมื่อรวมทั้งระบบจึงสามารถติดต่อกันได้ทั่วโลก

     


    กลุ่มสาระการเรียนรู้วิทยาศาสตร์  โรงเรียนแม่ลาน้อยดรุณสิกข์

    95  หมู่ 9  ต.แม่ลาน้อย  อ.แม่ลาน้อย  จ.แม่ฮ่องสอน  รหัสไปรษณีย์ 58120  โทร 053-689-2423

    Copyright © 2011-2012, Aerobics Gym. All Rights Reserved.

    Free Web Hosting